Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(3): e14318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686542

RESUMEN

The function of landscape plants on the ecosystem can alleviate environmental issues of urbanization and global change. Global changes due to elevated CO2 affect plant growth and survival, but there is a lack of quantitative methods to evaluate the adaptability of landscape plants to future climate conditions. Leaf traits characterized by leaf economic spectrum (LES) are the universal currency for predicting the impact on plant ecosystem functions. Elevated CO2 usually leads to photosynthetic acclimation (PC), characterised by decreased photosynthetic capacity. Here, we proposed a theoretical and practical framework for the use of LES and PC to project the potential performance of landscape plants under future climatic conditions through principal component analysis, structural equation modelling, photosynthetic restriction analysis and nitrogen allocation analysis. We used wintersweet (an important landscaping species) to test the feasibility of this framework under elevated CO2 and different nitrogen (N) supplies. We found that elevated CO2 decreased the specific leaf area but increased leaf N concentration. The results suggest wintersweet may be characterized by an LES with high leaf construction costs, low photosynthetic return, and robust stress resistance. Elevated CO2 reduced photosynthetic capacity and stomatal conductance but increased photosynthetic rate and leaf area. These positive physio-ecological traits, e.g., larger leaf area (canopy), higher water use efficiency and stress resistance, may lead to improved performance of wintersweet under the predicted future climatic conditions. The results suggest planting more wintersweet in urban landscaping may be an effective adaptive strategy to climate change.


Asunto(s)
Aclimatación , Dióxido de Carbono , Cambio Climático , Nitrógeno , Fotosíntesis , Hojas de la Planta , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Aclimatación/fisiología , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Ecosistema , Clima
2.
Front Plant Sci ; 15: 1367535, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38654907

RESUMEN

Introduction: Climate change-related CO2 increases and different forms of nitrogen deposition are thought to affect the performance of plants, but their interactions have been poorly studied. Methods: This study investigated the responses of photosynthesis and growth in two invasive maple species, amur maple (Acer ginnala Maxim.) and boxelder maple (Acer negundo L.), to elevated CO2 (400 µmol mol-1 (aCO2) vs. 800 µmol mol-1 (eCO2) and different forms of nitrogen fertilization (100% nitrate, 100% ammonium, and an equal mix of the two) with pot experiment under controlled conditions. Results and discussion: The results showed that eCO2 significantly promoted photosynthesis, biomass, and stomatal conductance in both species. The biochemical limitation of photosynthesis was switched to RuBP regeneration (related to Jmax) under eCO2 from the Rubisco carboxylation limitation (related to Vcmax) under aCO2. Both species maximized carbon gain by lower specific leaf area and higher N concentration than control treatment, indicating robust morphological plasticity. Ammonium was not conducive to growth under aCO2, but it significantly promoted biomass and photosynthesis under eCO2. When nitrate was the sole nitrogen source, eCO2 significantly reduced N assimilation and growth. The total leaf N per tree was significantly higher in boxelder maple than in amur maple, while the carbon and nitrogen ratio was significantly lower in boxelder maple than in amur maple, suggesting that boxelder maple leaf litter may be more favorable for faster nutrient cycling. The results suggest that increases in ammonium under future elevated CO2 will enhance the plasticity and adaptation of the two maple species.

3.
Tree Physiol ; 43(3): 379-389, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36322135

RESUMEN

Elevated CO2 and warmer temperature occur simultaneously under the current climate change. However, their combined effects on the photosynthetic traits in boreal trees are not well understood. This study investigated the morphological and photosynthetic responses of yellow birch (Betula alleghaniensis Britt.) to a combined treatment of CO2 and temperature (ambient, ACT (400 µmol mol-1 CO2 and current temperature) vs elevated, ECT (750 µmol mol-1 CO2 and current +4 °C temperature)). It was found that ECT significantly reduced leaf-area based photosynthetic rate (An), maximum Rubisco carboxylation rate (Vcmax), photosynthetic electron transport rate (Jmax), leaf nitrogen concentration, respiration and mesophyll conductance. There were two interesting findings: first, the primary mechanism of photosynthetic limitation shifted from Ribulose-1,5-bisphosphate (RuBP) carboxylation (related to Vcmax) to RuBP regeneration (related to Jmax) in response to ECT, leading to decreased transition point (Ci-t and An-t) from RuBP carboxylation to regeneration; second, the increase in total leaf area in response to ECT more than compensated for the downregulation of leaf-area based photosynthesis, leading to greater biomass in ECT than in ACT. We proposed a new protocol for evaluating photosynthetic limitations by comparing the relative relationship between the transition point (Ci-t and An-t) and the photosynthetic rate at growth CO2 (Ci-g and An-g). Furthermore, we found that Jmax (RuBP regeneration) was the primary limitation to An under ECT.


Asunto(s)
Betula , Dióxido de Carbono , Temperatura , Betula/metabolismo , Secuestro de Carbono , Fotosíntesis/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Hojas de la Planta/metabolismo
4.
Sci Total Environ ; 848: 157840, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35934026

RESUMEN

Although the effects of nitrogen deposition on tree water relations are studied extensively, its impact on the relative sensitivities of stomatal and xylem hydraulic conductance to vapor pressure deficit and water potential is still poorly understood. This study investigated the effects of a 7-year N deposition treatment on the responses of leaf water relations and sensitivity of canopy stomatal conductance to vapor pressure deficit (VPD) and water potential, as well as the sensitivity of branch hydraulic conductance to water potential in a dominant tree species (Quercus wutaishanica) and an associated tree species (Acer mono) in a temperate forest. It was found that the N deposition increased stomatal sensitivity to VPD, decreased stomatal sensitivity to water potential, and increased the vulnerability of the hydraulic system to cavitation in both species. The standardized stomatal sensitivity to VPD, however, was not affected by the N deposition, indicating that the stomata maintained the ability to regulate the water balance under nitrogen deposition condition. Although the increased stomatal sensitivity to VPD could compensate the decreased stomatal sensitivity to water potential to some extent, the combined response would increase the percentage loss of hydraulic conductivity (PLC) when 50 % loss in stomatal conductance occurred, particularly in the dominant species Q. wutaishanica. The result indicates that N deposition would increase the risk of hydraulic failure in those species if the soil and/or air becomes drier under future climate change scenarios. The results of the study can have significant implications on the modelling of ecosystem vulnerability to drought under the scenario of atmospheric nitrogen deposition.


Asunto(s)
Transpiración de Plantas , Árboles , Ecosistema , Nitrógeno , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Suelo , Árboles/fisiología , Agua/fisiología , Xilema/fisiología
5.
Physiol Plant ; 174(1): e13599, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34796965

RESUMEN

Bud development influences shoot branching and the plasticity and adaptability of plants. To explore the differences of post-embryonic development of different types of buds, shoots originated from adventitious buds and axillary buds of cuttings in two populations of balsam poplar (Populus balsamifera L.) were investigated for differences in leaf morphology, photosynthetic and growth characteristics, and the effects of a carbonic anhydrase (CA) inhibitor on CA activity, photosynthesis and mesophyll conductance (gm ). The results showed that axillary buds produced ovate first few leaves and longer shoots while adventitious buds produced lanceolate first few leaves with higher specific leaf area (SLA). There were no significant differences in leaf area-based photosynthetic rate (An ), maximum carboxylation rate (Vcmax ), and maximum electron transport rate (Jmax ) between shoots originated from the two bud types. Based on the principal component analysis, shoots of adventitious bud origin grouped on daytime respiration and SLA, while cuttings from axillary buds clustered toward the opposite direction of quantum yield and light saturation point. Shoots originated from different types of buds had different growth rates and biomass, but the direction of the differences varied with the population of the mother tree. The two populations differed in An , gm , and relationships between CA, An , and gm . There were differences in post-embryonic growth traits of shoots from axillary buds and those from adventitious buds, which may be an adaptive strategy for regeneration under different light conditions.


Asunto(s)
Populus , Biomasa , Fotosíntesis , Hojas de la Planta , Brotes de la Planta , Árboles
6.
Front Plant Sci ; 12: 765351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868164

RESUMEN

Plant species that start early in spring are generally more responsive to rising temperatures, raising concerns that climate warming may favour early season species and result in altered interspecific interactions and community structure and composition. This hypothesis is based on changes in spring phenology and therefore active growing season length, which would not be indicative of possible changes in growth as would changes in cumulative forcing temperatures (growing degree days/hours) in the Northern Hemisphere. In this study we analysed the effects of a moderate climate warming (2°C warmer than the 1981-2010 baseline) on the leaf-out of hypothetical species without chilling restriction and actual plant species with different chilling and forcing requirements in different parts of the globe. In both cases, early season species had larger phenological shifts due to low leaf-out temperatures, but accumulated fewer forcing gains (changes in cumulative forcing temperatures by warming) from those shifts because of their early spring phenology. Leaf-out time was closely associated with leaf-out temperatures and therefore plant phenological responses to climate warming. All plant species would be equally affected by climate warming in terms of total forcing gains added from higher temperatures when forcing gains occurring between early and late season species are included. Our findings will improve the understanding of possible mechanisms and consequences of differential responses in plant phenology to climate warming.

7.
Physiol Plant ; 172(1): 106-115, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33280131

RESUMEN

In response to global warming, trees are expected to shift their distribution ranges to higher latitudes. The range shift will expose them to novel environmental conditions, such as new photoperiod regimes. These factors can interact with rising atmospheric CO2 ([CO2 ]) to affect trees' physiology and growth. This study simulated future environmental conditions to investigate photosynthetic responses to changes in photoperiod regimes (seed origin [48°N], 52, 55, and 58°N) and [CO2 ] (ambient 400 vs. elevated 1000 µmol mol-1 ) in white birch (Betula papyrifera Marsh.) seedlings. Our results show that elevated [CO2 ] stimulated leaf photosynthesis (Pn ) at the two lower latitudes (48 and 52°N). However, this stimulation by elevated [CO2 ] was lost in the two higher latitudes (55 and 58°N). Elevated [CO2 ] led to the downregulation of maximum Rubisco activity (Vcmax ) for the two higher latitudes, and maximum electron transport rate (Jmax ) and triose phosphate utilization (TPU) at 58°N, while it enhanced Jmax and TPU for the two lower latitudes. Increased instantaneous water-use efficiency (IWUE) for the two lower latitudes was primarily attributed to the CO2 stimulation of Pn while the higher IWUE under the photoperiod regimes of 55 and 58°N latitudes was explained by reduced water loss. Photoperiod effects varied with [CO2 ]: Pn increased at the photoperiod regimes of 55 and 58°N in ambient [CO2 ] while it tended to decline under these photoperiods in elevated [CO2 ]. Our study suggests that the photosynthesis of white birch will likely respond negatively to northward migration or seed transfer in response to climate change.


Asunto(s)
Betula , Dióxido de Carbono , Cambio Climático , Fotoperiodo , Fotosíntesis , Hojas de la Planta , Humedales
8.
Front Plant Sci ; 11: 1248, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922423

RESUMEN

There are considerable variations in the percentage loss of hydraulic conductivity (PLC) at mid-day minimum water potential among and within species, but the underpinning mechanism(s) are poorly understood. This study tested the hypothesis that plants can regulate leaf specific hydraulic conductance (K l) via precise control over PLC under variable ΔΨ (water potential differential between soil and leaf) conditions to maintain the -m/b constant (-m: the sensitivity of stomatal conductance to VPD; b: reference stomatal conductance at 1.0 kPa VPD), where VPD is vapor pressure deficit. We used Populus euphratica, a phreatophyte species distributed in the desert of Northwestern China, to test the hypothesis. Field measurements of VPD, stomatal conductance (g s), g s responses to VPD, mid-day minimum leaf water potential (Ψ lmin), and branch hydraulic architecture were taken in late June at four sites along the downstream of Tarim River at the north edge of the Taklamakan desert. We have found that: 1) the -m/b ratio was almost constant (=0.6) across all the sites; 2) the average Ψ 50 (the xylem water potential with 50% loss of hydraulic conductivity) was -1.63 MPa, and mid-day PLC ranged from 62 to 83%; 3) there were tight correlations between Ψ 50 and wood density/leaf specific hydraulic conductivity (k l) and between specific hydraulic conductance sensitivity to water potential [d(k s)/dln(-Ψ)] and specific hydraulic conductivity (k s). A modified hydraulic model was applied to investigate the relationship between g s and VPD under variable ΔΨ and K l conditions. It was concluded that P. euphratica was able to control PLC in order to maintain a relatively constant -m/b under different site conditions. This study demonstrated that branchlet hydraulic architecture and stomatal response to VPD were well coordinated in order to maintain relatively water homeostasis of P. euphratica in the desert. Model simulations could explain the wide variations of PLC across and within woody species that are often observed in the field.

9.
Front Plant Sci ; 11: 506, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411171

RESUMEN

The distribution of tree species is expected to shift toward the pole in response to the climate change associated with the elevation of atmospheric CO2 concentration [CO2]. The shift will expose trees to a new photoperiod regime and other environmental conditions. The changes in these factors will likely have interactive effects on the ecophysiological traits of plants. This study investigated how CO2 elevation and change in photoperiod influence the timing of bud development, leaf senescence, and cold hardiness in the fall, and bud break in the spring in boreal white birch (Betula papyrifera Marsh.). Seedlings were exposed to two different [CO2] (AC = 400 µmol mol-1; EC = 1000 µmol mol-1) and four simulated photoperiod regimes in the greenhouse corresponding to each latitude [48 (seed origin), 52, 55, and 58°N] for two growing seasons. We found that EC advanced the initiation of leaf color change (10% leaf color change) in the fall by 23 days, but delayed the completion date of color change (90%). Leaf senescence started earlier in the photoperiods corresponding to 55 and 58°N latitude than those at 48 and 52°N latitudes under EC, but photoperiod did not affect leaf senescence under AC. Additionally, the temperature causing 50% electrolyte leakage (a measure of susceptibility to freezing damage) was more negative under the photoperiod corresponding to 55° (-46°C) and at 58°N (-60°C) under EC than at the lower latitudes (above -40°C). Budburst in the spring occurred earlier under the photoperiods corresponding to the two highest latitudes under EC, but the trend was opposite under AC. The combination of longer photoperiods and elevated [CO2] resulted in earlier budburst in the spring and later completion of leaf senescence in the fall as well as greater cold hardiness, leading to extended growing seasons from both ends. However, the onset of leaf senescence was earlier than in other treatment combinations. Furthermore, the photoperiod effects were quite different under the ambient [CO2]. Our results suggest that it is extremely important to consider the complex interactions of [CO2] and photoperiod in planning latitudinal seed transfers and in predicting the migration of boreal trees in response to climate change.

10.
Tree Physiol ; 40(7): 917-927, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32310277

RESUMEN

Past research suggests climate change will cause the climate envelopes of various tree species to shift to higher latitudes and can lead to a northward migration of trees. However, the success and scope of the migration are likely affected by factors that are not contained in the climate envelope, such as photoperiod and interactive effects of multiple environmental factors, and these effects are currently not well understood. In this study, we investigated the interactive effects of CO2 concentrations ([CO2]), photoperiod and soil moisture on the morphological and physiological traits of Populus tremuloides Michx. We grew seedlings under two levels of [CO2] (ambient [CO2] (AC) 400 vs elevated [CO2] (EC) 1000 µmol mol-1), four photoperiod regimes (growing season photoperiods at 48 (seed origin), 52, 55 and 58°N latitude) and two soil moisture regimes (high soil moisture (HSM) vs low soil moisture (LSM), -2 MPa) for two growing seasons in greenhouses. Both morphological and physiological responses were observed. Low soil moisture reduced leaf size, total leaf area and height growth by 33, 46 and 12%, respectively, and increased root/shoot ratio by 20%. The smaller leaf area and increased root/shoot ratio allowed the seedlings in LSM to maintain higher the maximum rate of Rubisco carboxylation (Vcmax) and the maximum rate of electron transport for RuBP regeneration (Jmax) than control seedlings (55 and 83% higher in July, 52 and 70% in August, respectively). Photoperiod and [CO2] modified responses to LSM and LSM altered responses to photoperiod and [CO2], e.g., the August photosynthetic rate was 44% higher in LSM than in HSM under EC but no such a difference existed under AC. The increase in Vcmax and Jmax in response to LSM varied with photoperiod (Vcmax: 36% at 52°N, 22% at 55°N, 47% at 58°N; Jmax: 29% at 52°N, 21% at 55°N, 45% at 58°N). Stomatal conductance and its reduction in response to LSM declined with increasing photoperiod, which can have significant implications for soil moisture effect on northward migration. This study highlights the need to consider the complex interactions of [CO2], photoperiod and soil moisture when planning assisted migration or predicting the natural migration of boreal forests in the future.


Asunto(s)
Cambio Climático , Sequías , Dióxido de Carbono , Fotoperiodo , Fotosíntesis , Hojas de la Planta , Suelo , Árboles
11.
Front Plant Sci ; 8: 1354, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861091

RESUMEN

Insufficient chilling resulting from rising winter temperatures associated with climate warming has been an area of particular interest in boreal and temperate regions where a period of cool temperatures in fall and winter is required to break plant dormancy. In this study, we examined the budburst and growth of trembling aspen (Populus tremuloides Michx.), balsam poplar (Populus balsamifera L.), white birch (Betula papyrifera Marsh.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), jack pine (Pinus banksiana Lamb.), and lodgepole pine (Pinus contorta Dougl. ex. Loud.) seedlings subjected to typical northern Ontario, Canada, spring conditions in climate chambers after different exposures to natural chilling. Results indicate that chilling requirements (cumulative weighted chilling hours) differed substantially among the seven species, ranging from 300 to 500 h for spruce seedlings to more than 1100 h for trembling aspen and lodgepole pine. Only spruce seedlings had fulfilled their chilling requirements before December 31, whereas the other species continued chilling well into March and April. Species with lower chilling requirements needed more heat accumulation for budburst and vice versa. Insufficient chilling delayed budburst but only extremely restricted chilling hours (<400) resulted in abnormal budburst and growth, including reduced needle and shoot expansion, early budburst in lower crowns, and erratic budburst on lower stems and roots. Effects, however, depended on both the species' chilling requirements and the chilling-heat relationship. Among the seven tree species examined, trembling aspen is most likely to be affected by reduced chilling accumulation possible under future climate scenarios, followed by balsam poplar, white birch, lodgepole pine, and jack pine. Black and white spruce are least likely to be affected by changes in chilling hours.

12.
PLoS One ; 8(10): e76586, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146894

RESUMEN

Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol(-1)) and elevated (784 µmol mol(-1)) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable.


Asunto(s)
Acer/efectos de los fármacos , Acer/fisiología , Dióxido de Carbono/farmacología , Humedad , Luz , Plantones/fisiología , Suelo/química , Acer/efectos de la radiación , Aerobiosis/efectos de los fármacos , Aerobiosis/efectos de la radiación , Análisis de Varianza , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/efectos de la radiación , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/efectos de la radiación , Agua
13.
Plant Sci ; 203-204: 55-62, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23415328

RESUMEN

To study the effects of source-sink ratio and nutrient supply on photosynthetic acclimation to CO(2) elevation, we subjected white birch seedlings to two levels of nutrient supply (high vs. low) and CO(2) concentrations (ambient vs. doubled [CO(2)]) for two months and then shaded the lower canopy on half of the seedlings to reduce source/sink ratio for an additional month. The CO(2) elevation significantly increased P(n) and IWUE at both nutrient levels but the increase was greater in the high than low nutrient treatment. The CO(2) elevation resulted in a down-regulation of V(cmax) in the low nutrient treatment but up-regulation of J(max), TPU, [Formula: see text] and J(c) in the high nutrient after 3 months of treatment. Both the CO(2) elevation and high nutrient supply increased the partition of total electron transport to carboxylation at the expense of oxidation. The seedlings responded to the shading of the lower canopy by reducing biomass allocation to roots rather than making physiological adjustments to unshaded leaves in the upper canopy. Our results suggest that the direction of photosynthetic acclimation to CO(2) elevation in white birch was nutrient-dependent and an increase in sink strength could reduce the feedback inhibition of photosynthesis.


Asunto(s)
Adaptación Fisiológica , Betula/fisiología , Dióxido de Carbono/farmacología , Nitrógeno/metabolismo , Plantones/fisiología , Betula/efectos de los fármacos , Betula/metabolismo , Biomasa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Transporte de Electrón , Nitrógeno/análisis , Oxígeno/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Transpiración de Plantas , Plantones/efectos de los fármacos , Plantones/metabolismo
14.
F1000Res ; 2: 13, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24555025

RESUMEN

White birch (Betula paperifera Mash) seedlings were exposed to progressively warming in greenhouses under ambient and elevated CO 2 concentrations for 5 months to explore boreal tree species' potential capacity to acclimate to global climate warming and CO 2 elevation. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured at temperatures of 26 (o)C and 37 (o)C. Elevated CO 2 significantly increased net photosynthetic rate (Pn) at both measurement temperatures, and Pn at 37 (o)C was higher than that at 26 (o)C under elevated CO 2. Stomatal conductance (gs) was lower at 37 (o)C than at 26 (o)C, while transpiration rate (E) was higher at 37 (o)C than that at 26 (o)C. Elevated CO 2 significantly increased instantaneous water-use efficiency (WUE) at both 26 (o)C and 37 (o)C, but WUE was markedly enhanced at 37 (o)C under elevated CO 2. The effect of temperature on maximal carboxylation rate (Vcmax), PAR-saturated electron transport rate (Jmax) and triose phosphate utilization (TPU) varied with CO 2, and the Vcmax and Jmax were significantly higher at 37 (o)C than at 26 (o)C under elevated CO 2. However, there were no significant interactive effects of CO 2 and temperature on TPU. The actual photochemical efficiency of PSII (DF/ Fm'), total photosynthetic linear electron transport rate through PSII (JT) and the partitioning of JT to carboxylation (Jc) were higher at 37 (o)C than at 26 (o)C under elevated CO 2. Elevated CO 2 significantly suppressed the partitioning of JT to oxygenation (Jo/JT). The data suggest that the CO 2 elevation and progressive warming greatly enhanced photosynthesis in white birch seedlings in an interactive fashion.

15.
Tree Physiol ; 30(2): 234-43, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20007132

RESUMEN

To investigate the interactive effects of soil temperature (T(soil)) and nutrient availability on the response of photosynthesis to elevated atmospheric carbon dioxide concentration ([CO(2)]), white birch (Betula papyrifera Marsh.) seedlings were exposed to ambient (360 micromol mol(-1)) or elevated (720 micromol mol(-1)) [CO(2)], three T(soil) (5, 15 and 25 degrees C initially, increased to 7, 17 and 27 degrees C, respectively, 1 month later) and three nutrient regimes (4/1.8/3.3, 80/35/66 and 160/70/132 mg l(-1) N/P/K) for 3 months in environment-controlled greenhouses. Elevated [CO(2)] increased net photosynthetic rate (A(n)), instantaneous water-use efficiency (IWUE), internal to ambient carbon dioxide concentration ratio (C(i)/C(a)), triose phosphate utilization (TPU) and photosynthetic linear electron transport to carboxylation (J(c)), and it decreased actual photochemical efficiency of photosystem II (DeltaF/F(m)'), the fraction of total linear electron transport partitioned to oxygenation (J(o)/J(T)) and leaf N concentration. The low T(soil) suppressed A(n), transpiration rate (E), TPU, DeltaF/F(m)' and J(c), but it increased J(o)/J(T). The low nutrient treatment reduced A(n), IWUE, maximum carboxylation rate of Rubisco, light-saturated electron transport rate, TPU, DeltaF/F(m)', J(c) and leaf N concentration, but increased C(i)/C(a). There were two-factor interactions for C(i)/C(a), TPU and leaf N concentration, and a significant effect of CO(2) x T(soil) x nutrient regime on A(n), IWUE and J(c). The stimulations of A(n) and IWUE by elevated [CO(2)] were limited to seedlings grown under the intermediate and high nutrient regimes at the intermediate and high T(soil). For J(c), the [CO(2)] effect was significant only at intermediate T(soil) + high nutrient availability. No significant [CO(2)] effects were observed under the low T(soil) at any nutrient level. Our results support this study's hypothesis that low T(soil) would reduce the positive effect of high nutrient supply on the response of A(n) to elevated [CO(2)].


Asunto(s)
Betula/metabolismo , Dióxido de Carbono/metabolismo , Frío , Fotosíntesis , Suelo , Fertilizantes , Nitrógeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Plantones/metabolismo
16.
Tree Physiol ; 29(11): 1341-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19797245

RESUMEN

White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations (ambient: 360 micromol mol(-1) and elevated: 720 micromol mol(-1)), three soil temperatures (5, 15 and 25 degrees C initially, increased to 7, 17 and 27 degrees C, respectively, 1 month later) and three moisture regimes (low: 30-40%; intermediate: 45-55% and high: 60-70% field water capacity) in greenhouses. In situ gas exchange and chlorophyll fluorescence were measured after 2 months of treatments. Net photosynthetic rate (A(n)) of seedlings grown under the intermediate and high moisture regimes increased from low to intermediate T(soil) and then decreased to high T(soil). There were no significant differences between the low and high T(soil), with the exception that A(n) was significantly higher under high than low T(soil) at the high moisture regime. No significant T(soil) effect on A(n) was observed at the low moisture regime. The intermediate T(soil) increased stomatal conductance (g(s)) only at intermediate and high but not at low moisture regime, whereas there were no significant differences between the low and high T(soil) treatments. Furthermore, the difference in g(s) between the intermediate and high T(soil) at high moisture regime was not statistically significant. The low moisture regime significantly reduced the internal to ambient CO2 concentration ratio at all T(soil). There were no significant individual or interactive effects of treatment on maximum carboxylation rate of Rubisco, light-saturated electron transport rate, triose phosphate utilization or potential photochemical efficiency of photosystem II. The results of this study suggest that soil moisture condition should be taken into account when predicting the responses of white birch to soil warming.


Asunto(s)
Betula/fisiología , Dióxido de Carbono/metabolismo , Fotosíntesis , Suelo , Temperatura , Agua/metabolismo , Betula/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Plantones/metabolismo , Plantones/fisiología , Estrés Fisiológico
17.
Tree Physiol ; 27(6): 891-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17331907

RESUMEN

To study the effects of elevated CO2 concentration ([CO2]) on relationships between nitrogen (N) nutrition and foliar gas exchange parameters, white birch (Betula papyrifera Marsh.) seedlings were exposed to one of five N-supply regimes (10, 80, 150, 220, 290 mg N l(-1)) in either ambient [CO2] (360 micromol mol(-1)) or elevated [CO2] (720 micromol mol(-1)) in environment-controlled greenhouses. Foliar gas exchange and chlorophyll fluorescence were measured after 60 and 80 days of treatment. Photosynthesis showed a substantial down-regulation (up to 57%) in response to elevated [CO2] and the magnitude of the down-regulation generally decreased exponentially with increasing leaf N concentration. When measured at the growth [CO2], elevated [CO2] increased the overall rate of photosynthesis (P(n)) and instantaneous water-use efficiency (IWUE) by up to 69 and 236%, respectively, but decreased transpiration (E) and stomatal conductance (g(s)) in all N treatments. However, the degree of stimulation of photosynthesis by elevated [CO2] decreased as photosynthetic down-regulation increased from 60 days to 80 days of treatment. Elevated [CO2] significantly increased total photosynthetic electron transport in all N treatments at 60 days of treatment, but the effect was insignificant after 80 days of treatment. Both P(n) and IWUE generally increased with increasing leaf N concentration except at very high leaf N concentrations, where both P(n) and IWUE declined. The relationships of P(n) and IWUE with leaf N concentration were modeled with both a linear regression and a second-order polynomial function. Elevated [CO2] significantly and substantially increased the slope of the linear regression for IWUE, but had no significant effect on the slope for P(n). The optimal leaf N concentration for P(n) and IWUE derived from the polynomial function did not differ between the CO2 treatments when leaf N was expressed on a leaf area basis. However, the mass-based optimal leaf N concentration for P(n) was much lower in seedlings in elevated [CO2] than in ambient [CO2] (31.88 versus 37.00 mg g(-1)). Elevated [CO2] generally decreased mass-based leaf N concentration but had no significant effect on area-based leaf N concentration; however, maximum N concentration per unit leaf area was greater in elevated [CO2] than in ambient [CO2] (1.913 versus 1.547 g N m(-2)).


Asunto(s)
Betula/metabolismo , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Plantones/metabolismo , Betula/fisiología , Clima , Hojas de la Planta/fisiología
18.
Tree Physiol ; 26(11): 1457-67, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16877330

RESUMEN

To investigate the interactive effects of atmospheric carbon dioxide concentration ([CO(2)]) and nutrition on photosynthesis and its acclimation to elevated [CO(2)], a two-way factorial experiment was carried out with two nutritional regimes (high- and low-nitrogen (N), phosphorus (P) and potassium (K)) and two CO(2) concentrations (360 and 720 ppm) with white birch seedlings (Betula papyrifera Marsh.) grown for four months in environment-controlled greenhouses. Elevated [CO(2)] enhanced maximal carboxylation rate (V(cmax)), photosynthetically active radiation-saturated electron transport rate (J(max)), actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/F(m)') and photosynthetic linear electron transport to carboxylation (J(c)) after 2.5 months of treatment, and it increased net photosynthetic rate (A(n)), photosynthetic water-use efficiency (WUE), photosynthetic nitrogen-use efficiency (NUE) and photosynthetic phosphorus-use efficiency (PUE) after 2.5 and 3.5 months of treatment, but it reduced stomatal conductance (g(s)), transpiration rate (E) and the fraction of total photosynthetic linear electron transport partitioned to oxygenation (J(o)/J(T)) after 2.5 and 3.5 months of treatment. Low nutrient availability decreased A(n), WUE, V(cmax), J(max), triose phosphate utilization (TPU), (/F(m)' - F)//F(m)' and J(c), but increased J(o)/J(T) and NUE. Generally, V(cmax) was more sensitive to nutrient availability than J(max). There were significant interactive effects of [CO(2)] and nutrition over time, e.g., the positive effects of high nutrition on A(n), V(cmax), J(max), DeltaF/F(m)' and J(c) were significantly greater in elevated [CO(2)] than in ambient [CO(2)]. In contrast, the interactive effect of [CO(2)] and nutrition on NUE was significant after 2.5 months of treatment, but not after 3.5 months. High nutrient availability generally increased PUE after 3.5 months of treatment. There was evidence for photosynthetic up-regulation in response to elevated [CO(2)], particularly in seedlings receiving high nutrition. Photosynthetic depression in response to low nutrient availability was attributed to biochemical limitation (or increased mesophyll resistance) rather than stomatal limitation. Elevated [CO(2)] reduced leaf N concentration, particularly in seedlings receiving low nutrition, but had no significant effect on leaf P or K concentration. High nutrient availability generally increased area-based leaf N, P and K concentrations, but had negligible effects on K after 2.5 months of treatment.


Asunto(s)
Betula/fisiología , Dióxido de Carbono/farmacología , Fotosíntesis/fisiología , Plantones/fisiología , Betula/efectos de los fármacos , Clorofila/metabolismo , Cinética , Nitrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Plantones/efectos de los fármacos
19.
Tree Physiol ; 25(5): 523-31, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15741153

RESUMEN

One-year-old jack pine (Pinus banksiana Lamb.) and current-year white birch (Betula papyrifera Marsh.) seedlings were grown in ambient (360 ppm) or twice ambient (720 ppm) atmospheric CO2 concentration ([CO2]) and at three soil temperatures (Tsoil = 7, 17 and 27 degrees C initially, increased to 10, 20 and 30 degrees C two months later, respectively) in a greenhouse for 4 months. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured after 2.5 and 4 months of treatment. Low Tsoil suppressed net photosynthetic rate (Pn), stomatal conductance (g(s)) and transpiration rate (E) in jack pine in both CO2 treatments and g(s) and E in white birch in ambient [CO2], but enhanced instantaneous water-use efficiency (IWUE) in both species after 2.5 months of treatment. Treatment effects on g(s) and E remained significant throughout the 4-month study. Low Tsoil reduced maximal carboxylation rate (Vcmax) and PAR-saturated electron transport rate (Jmax) in jack pine in elevated [CO2] after 2.5 months of treatment, but not after 4 months of treatment. Low Tsoil increased actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/Fm') in jack pine, but decreased DeltaF/Fm' in white birch after 4 months of treatment. In response to low Tsoil, photosynthetic linear electron transport to carboxylation (Jc) decreased in jack pine after 2.5 months and in white birch after 4 months of treatment. Low Tsoil increased the ratio of the photosynthetic linear electron transport to oxygenation (Jo) to the total photosynthetic linear electron transport rate through PSII (Jo/J(T)) in both species after 2.5 months of treatment, but the effects became statistically insignificant in white birch after 4 months of treatment. High Tsoil decreased foliar N concentration in white birch. Elevated [CO2] increased Pn, IWUE and Jc but decreased Jo/J(T) in both species at both measurement times except Jc in white birch after 2.5 months of treatment. Elevated [CO2] also decreased g(s) and E in white birch at high Tsoil, Vcmax in both species and triose phosphate utilization in white birch at low Tsoil after 4 months of treatment, and DeltaF/Fm' in white birch after 2.5 months of treatment. Elevated [CO2] also increased foliar N concentration in both species. Low Tsoil caused no permanent damage to PSII in either species, but jack pine responded and acclimated to low Tsoil more quickly than white birch. Photosynthetic down-regulation and a decrease in photosynthetic electron transport to photorespiration occurred in both species in response to elevated [CO2].


Asunto(s)
Betula/fisiología , Dióxido de Carbono/fisiología , Fotosíntesis/fisiología , Pinus/fisiología , Suelo , Temperatura , Carbono/metabolismo , Transporte de Electrón/fisiología , Nitrógeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Plantones/fisiología
20.
Tree Physiol ; 22(12): 819-27, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12184971

RESUMEN

To examine the effects of soil temperature on a coupled photosynthesis-stomatal conductance model, seedlings of trembling aspen (Populus tremuloides Michx.), jack pine (Pinus banksiana Lamb.), black spruce (Picea Mariana (Mill.) B.S.P.) and white spruce (Picea glauca (Moench) Voss) were exposed to soil temperatures ranging from 5 to 35 degrees C for 4 months. Light and CO(2) response curves of foliar gas exchange were measured for model parameterization. The effects of soil temperature on four key model parameters, V(cmax) (maximum rate of carboxylation), J(max) (maximum rate of electron transport), alpha (energy conversion efficiency or quantum efficiency of electron transport) and R(d) (daytime dark respiration), were modeled using two third-order polynomial equations and a modified Arrhenius equation. In all species, V(cmax) and J(max) increased with soil temperature up to an optimum, and then decreased with further increases in soil temperature. In the conifers, alpha showed a similar response to soil temperature as V(cmax) and J(max), but soil temperature had no significant effect on alpha in aspen. Soil temperature had no significant effect on R(d) in any species. The three equations described the relationships between soil temperature and the model parameters reasonably well, but performed best for V(cmax) and worst for alpha. No significant relationships were identified between soil temperature and the parameters of the stomatal conductance model.


Asunto(s)
Modelos Biológicos , Fotosíntesis/fisiología , Transpiración de Plantas/fisiología , Árboles/fisiología , Dióxido de Carbono/metabolismo , Picea/fisiología , Pinus/fisiología , Populus/fisiología , Suelo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...